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Abstract – The phenomenon of scattering of water waves is examined in presence of discontinuity at the free surface of an ocean of finite 
depth. The surface discontinuity is thought of as originating due to the presence of a semi-infinite free surface with surface tension on one 
half and a semi-infinite ice-covered ocean on the other half. Appropriate expressions for Green’s functions are set up for the fluid occupied 
by the free surface with surface tension and for the fluid occupied by the ice-covered ocean. Employing Green’s second integral theorem to 
the above mentioned Green’s functions and the potential function the problem is reduced to finding out solutions of a pair of coupled 
Fredholm integral equation. Analytical expressions of reflection and transmission coefficients are obtained in integral forms. 
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1  INTRODUCTION 
 

The problems of scattering of water waves due to a 
discontinuity in the free surface are relevant to the ongoing 
research activities in the field of fluid dynamics, ocean 
engineering and coastal dynamics and have been dealt with 
by many authors. The free surface discontinuity arises 
because of two different types of boundary conditions on 
the two halves occupied by fluid. The difference in 
boundary conditions may arise, for instance, due to 
presence of two types of inertial surfaces of different 
surface densities of the two halves. Peters[1], Weitz and 
Keller[2] considered the Weiner-Hopf technique to study 
the propagation of surface waves at an inertial surface 
composed of a thin but uniform distribution of non-
interacting floating materials, e.g. broken ice, floating mat, 
etc. on one side and the free surface on the other side. The 
problem of water wave scattering in presence of finite or 
semi-infinite elastic plate have been dealt with in [3,4,5,6,7]. 
Chung and Linton [8] found analytic expressions of 
hydrodynamic coefficients relating to scattering of water 
waves across a finite gap between two semi-infinite elastic 

plates using techniques of residue calculus. Chakraborti [9] 
formulated a singular integral equation approach to derive 
expressions for reflection and transmission coefficients for 
the problem concerning a semi-infinite inertial surface. 

Another class of surface discontinuity arises in presence 
of a dock in the surface of the ocean. The free surface 
discontinuity arises, as an instance, when half the surface of 
water is free and the remaining half is covered by a dock 
extended upto infinity. The dock problem was formulated 
mathematically by Friedrich and Lewy [10]. Linton [11] 
made use of modified residue calculus technique to study 
the scattering problem in presence o a finite dock. 
Chakraborti, Mandal and Gayen [12] employed Fourier 
analysis and singular integral equation to examine the 
semi-infinite dock problem. Hermans [13] applied integral 
equations to study free-surface wave interaction with a 
thick flexible dock. Mandal and De [14] investigated surface 
wave propagation over small undulation at the bottom of 
the ocean with surface discontinuity using an eigen 
function expansion method. Gangopadhyay and Basu [15] 
studied scattering of capillary waves in front of a semi-
infinite dock in an ocean with porous undulatory bottom 
using eigen function expansion and small perturbation 
technique. 

Basu and Mandal [16] worked out diffraction of water 
waves by a deformation of the bottom in presence of 
surface tension in the free surface. P.F. Rhodes-Robinson 
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[17] discussed fundamental singularities in the theory of 
scattering of water waves in presence of surface tension. 

Meylan and Squire [18] considered scattering of water 
waves by finite ice-floes by reducing the problem to a 
Fredholm integral equation with logarithmic kernel. They 
constructed a Green’s function for the boundary value 
problem of solving an ordinary differential equation subject 
to the boundary conditions on the ice-floes. Mandal and 
Basu [19] examined diffraction of water waves by a small 
cylindrical elevation of the bottom of a laterally unbounded 
ocean covered by an ice sheet using perturbation analysis. 
In this connection, Mandal and Maiti [20] investigated the 
problem of oblique wave scattering by cylindrical 
undulations on the bed of an ice-covered ocean by using a 
simplified perturbation analysis. 

The present paper deals with the problem of scattering 
of water waves in an ocean of finite depth with a surface 
discontinuity having an ice-cover on one half and free 
surface with surface tension on the other. Appropriate 
expressions for Green’s functions are constructed in two 
different zones. Next, Green’s second identity is employed 
to the Green’s functions and the potential function. The 
continuity of pressure and velocity at the junction along the 
vertical line of the surface of discontinuity is made use of. 

Finally, a pair of coupled Fredholm integral equation is 
arrived at, which can be solved by standard numerical 
methods. Integrals representations of the hydrodynamic 
coefficients of interest such as reflection and transmission 
coefficients are arrived at. 
 
2  MATHEMATICAL FORMULATION 

 
A two-dimensional potential flow in an ocean of finite 

depth ℎ is considered. A rectangular Cartesian co-ordinate 
system with 푦-axis vertically downwards along the depth 
of the ocean is chosen. The semi-infinite ice-covered surface 
of the ocean is assumed to occupy the semi-infinite region 
given by 0	≤ 푥 < ∞, 푦 = 0 while the free surface subject to 
surface tension is assumed to occupy the semi-infinite 
region given by 	−∞ < 푥 < 		0,푦 = 0. The line of 
discontinuity is along 푥 = 0. The undisturbed upper surface 
is considered to be along 푦 = 0. 

When waves traversing from 푥 = 	−∞ are incident on 
the line of discontinuity, the phenomenon of scattering 
takes place. Let 휓(푥, 푦) = 푅푒{휑(푥, 푦)푒 } represent the 
velocity potential for the two-dimensional fluid region. 
Within the framework of linear theory and irrotational 
motion, the mathematical problem under consideration is 
to solve the boundary value problem in which the function 

휑 satisfies the following Laplace equation along with 
certain boundary conditions: 

∇ 휑 = 0 in the entire fluid region (1) 
The free surface boundary condition subject to surface 

tension is given by: 
퐾 휑 + 휑 +푀휑 = 0 on 푦 = 0,푥 < 0 (2) 

where 퐾 = , 휔 is the angular frequency, 푔 is the 

acceleration due to gravity; the surface tension parameter is 
푀 given by 푀 = 푇/휌푔 where T is the coefficient of surface 
tension, 휌 is the density of water. The ice-cover condition is 
given by: 

퐾 휑+ 퐷 + 1 휑 = 0 on 푦 = 0, 푥 > 0 (3) 
where 퐷 = 퐸ℎ /12(1− 휈 )휌푔 is the ice-thickness 

parameter, 퐸 being the Young’s modulus, 휈 is the Poisson’s 
ratio of the material of the ice cover; the ice-cover being 
modeled as a thin sheet of an elastic plate of infinite extent 
having a very small thickness ℎ  of which still a smaller 
part is immersed into water. The bottom boundary 
condition is given by: 

휑 = 0 on 푦 = ℎ  (4) 
The far field behaviour of the potential function is 

described by: 

휑~ 휑 (푥, 푦) + 푅휑 (−푥,푦)							푎푠	푥 → −∞
푇휑 (푥,푦)																													푎푠	푥 → ∞	

 (5) 

푅 and 푇 respectively denote the reflection and the 
transmission coefficients of the present scattering problem. 

휑 (푥,푦) = , ( )

,
푒 ,   (6) 

푘 ,  being the unique positive real zero of ∆ (푘) where 
∆ (푘) ≡ 푘(1 +푀푘 )푠푖푛ℎ푘ℎ − 퐾 푐표푠ℎ푘ℎ = 0 (7) 

and 휑 (푥, 푦) = , ( )

,
푒 ,   (8) 

푘 ,  being the unique positive real zero of ∆ (푘) where 
∆ (푘) ≡ 푘(1 + 퐷푘 )푘푠푖푛ℎ푘ℎ − 퐾 푐표푠ℎ푘ℎ = 0 (9) 

 
 
3  METHOD OF SOLUTION 
 

Let 퐺 (푥, 푦; 휉, 휂) be the Green’s function due a 
submerged line source at (휉, 휂) for the region occupied by 
the free surface subject to surface tension. Let the 
corresponding function for the ice-covered region be 
퐺 (푥,푦; 휉, 휂). Then 퐺  and 퐺  satisfy the following 
conditions: 

∇ 퐺 , = 0 in the region 
except at (휉, 휂);	−∞ < 푥, 휉 < ∞  (10) 
퐾 퐺 + 퐺 + 푀퐺 = 0 on 푦 = 0, 푥 < 0  (11) 

퐾 퐺 + 퐷 + 1 퐺 = 0 on 푦 = 0,푥 > 0  (12) 
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퐺 , → 푙푛푟 where 푟 = {(푥 − 휉) + (푦 − 휂) } → 0  (13) 
퐺 = 퐺 = 0 on 푦 = ℎ  (14) 

The radiation conditions are given by: 
퐺 ~ multiple of 푐표푠ℎ푘 , (ℎ − 푦)푒 , | | as |푥 − 휉| → ∞ (15) 
퐺 ~ multiple of 푒 , | | as |푥 − 휉| → ∞  (16) 

The above boundary value problems for 퐺 , 푗 = 1,2 have 
the following solutions as given by Thorne [21] : 

퐺 (푥, 푦; 휉, 휂)

= −푙푛
푟
푟

− 2
푒 푠푖푛ℎ푘푦푠푖푛ℎ푘휂

푘
푐표푠푘(푥 − 휉)푑푘			

− 2
cosh(ℎ − 푦)푐표푠ℎ푘(ℎ − 휂)
푘푠푖푛ℎ푘ℎ − 퐾 푐표푠ℎ푘ℎ

푐표푠푘(푥 − 휉)
푐표푠ℎ푘ℎ

푑푘 

 (17) 

where 푟 = {(푥 − 휉) + (푦 + 휂) }  . The path 퐶 is along 
the positive real axis in the complex 푘-plane. 퐶 is indented 
below the unique real positive roots 푘 ,  and 푘 ,  satisfying 
the transcendental equations (7) and (9) respectively. 

Equation (17) has the following alternative 
representation: 

퐺 (푥, 푦; 휉,휂)

= −4휋푖
coshk , (h− y)coshk , (h− η)

2푘 , ℎ+ 푠푖푛ℎ2푘 , ℎ
푒 , | |

− 4휋
푐표푠푘 , (ℎ − 푦)푐표푠ℎ푘 , (ℎ − 휂)

2푘 , ℎ+ 푠푖푛2푘 , ℎ
푒 , | | 

 (18) 
where ±푖푘 ,  and ±푖푘 , (푛 = 1,2, … . ) are the purely 

imaginary roots of the equations (7) and (9) respectively. 
Green’s function 퐺  for the free surface having surface 

tension has the following explicit form as given by Rhodes-
Robinson [22]: 
퐺 (푥,푦; 휉, 휂)

= −4휋푖 ∙
1 +푀푘 , 푐표푠ℎ푘 , (ℎ − 푦)푐표푠푘 , (ℎ − 휂)푒 , | |

2푘 , ℎ 1 +푀푘 , + 1 + 3푀푘 , 푠푖푛ℎ2푘 , ℎ

− 4휋
1−푀푘 , 푐표푠푘 , (ℎ − 푦)푐표푠푘 , (ℎ − 휂)푒 , | |

2푘 , ℎ 1−푀푘 , + 1− 3푀푘 , 푠푖푛2푘 ,
 

 (19) 
Again, Green’s function 퐺  for the ice-covered half space 

has the following integral representation: 
퐺 (푥, 푦; 휉, 휂) =

−∫
( ) ( )

( )
coshk(ℎ − 휂) 푒 | |푑푘 

 (20) 
where Γ is the path along the whole real axis with 

indentations above the pole at 푘 = −푘 ,  and below the pole 
at 푘 = 푘 , . The integral (20) can be evaluated by the 

method of residues, by forming a closed contour with Γ and 
a semi-circle of large radius above the real axis. The 
residues to be evaluated are at 푘 = 푘 , ,휇,−휇̅, 푖푘 , (푛 =
1,2, … . ) and we finally get the following explicit expression 
for 퐺 : 
퐺 (푥,푦; 휉, 휂)

= −4휋
1 + 퐷푘 , 푐표푠푘 , (ℎ − 푦)푐표푠푘 , (ℎ− 휂)

2푘 , ℎ 1 +퐷푘 , + 1 + 5퐷푘 , 푠푖푛2푘 , ℎ
푒 , | |

− 4휋푖
1 +퐷푘 , 푐표푠ℎ푘 , (ℎ− 푦)푐표푠ℎ푘 , (ℎ− 휂)

2푘 , ℎ 1 +퐷푘 , + 1 + 5퐷푘 , 푠푖푛ℎ2푘 , ℎ
푒 , | |

− 4휋푖
(1 +퐷휇 )푐표푠ℎ휇(ℎ − 푦)푐표푠ℎ휇(ℎ− 휂)
2휇ℎ(1 +퐷휇 ) + (1 + 5퐷휇 )푠푖푛ℎ2휇ℎ 푒

| | 	

− 4휋푖
(1 +퐷휇̅ )푐표푠ℎ휇̅(ℎ − 푦)푐표푠ℎ휇̅(ℎ− 휂)
2휇̅ℎ(1 + 퐷휇̅ ) + (1 + 5퐷휇̅ )푠푖푛ℎ2휇̅ℎ 푒

| | 

  (21) 
  
Next, we make use of Green’s integral theorem to the 

function 휑 − 푒  and 퐺 (푥 ≤ 0, 휉 ≤ 0) in the region 
bounded by the lines 푦 = 0,−푋 ≤ 푥 ≤ 0; 푥 = −푋, 0 ≤ 푦 ≤
ℎ;푦 = ℎ,−푋 ≤ 푥 ≤ 0; 푥 = 0,ℎ ≤ 푦 ≤ 0; a small circle of 
radius 휖 and centre at (휉,휂). This leads to 
2휋휑(휉, 휂) = 2휋푒

+ 휙(0,푦)
휕퐺
휕푥

(0,푦; 휉,휂)

−퐺 (0,푦; 휉, 휂)
휕휙
휕푥

(0,푦) 푑푦 + 휒(휉, 휂); 	휉 ≤ 0 

 (22) 
where 

휒(휉, 휂) = ∫ 푖퐾 푒 퐺 (0,푦; 휉, 휂) − 푒 (0,푦; 휉, 휂) 푑푦 
 (23) 
To evaluate 휒(휉,휂), we once again made use of Green’s 

integral theorem to the functions Ω(푥, 푦) = 푒  and 
퐺 (푥, 푦; 휉, 휂) in the region mentioned above. We are lead to: 
휒(휉, 휂) = 2휋Ω(휉, 휂) − 2∫ 푒 (0,푦; 휉, 휂)푑푦 , 휉 ≤ 0  (24) 

Using equation (24) in the equation (23) the ultimately 
making 푋 → ∞ and 휖 → 0 we obtain: 

2휋휑(휉, 휂) = 2휋푒 푒 + 푒

+ 휑(0,푦)
휕퐺
휕푥

(0,푦; 휉, 휂)

− 퐺 (0,푦; 휉,휂)
휕휑
휕푥

(0, 푦)

− 2휋푒
휕퐺
휕푥

(0,푦; 휉, 휂) 푑푦, 휉 ≤ 0 

 (25) 
Again we employ Green’s integral theorem to the 

functions 휑 and 퐺 (푥 ≥ 0, 휉 ≥ 0) in the region bounded by 
the lines 푦 = 0, 0 ≤ 푥 ≤ 푋; 푥 = 푋, 0 ≤ 푦 ≤ ℎ;푦 = ℎ, 0 ≤ 푥 ≤
푋; 푥 = 0, 0 ≤ 푦 ≤ ℎ; a small circle of radius 휖 and centre at 
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(휉, 휂). Making 푋 → ∞ and 휖 → 0, the following integral 
expression for 휑(휉, 휂) is arrived at: 
2휋휑(휉, 휂) =

∫ 퐺 (0,푦; 휉, 휂) (0,푦) − (0, 푦; 휉, 휂)휑(0,푦) 푑푦, 휉 ≥ 0 

 (26) 
Now we consider the limiting values of the expressions 

(25) and (26) by letting 휉 → 0 − and 휉 → 0 + respectively. 
We get lim → 휑(휉,휂) and lim → 휑(휉, 휂). Since 휑 is 
continuous along the line 푥 = 0, taking the arithmetic mean 
of the two expressions, we have: 
휑(0,휂) = , ( )

,
+ ∫ (퐺 − 퐺 )(0,푦; 0, 휂) (0,푦)푑푦 

 (27) 
Again differentiating the equations (25) and (26) with 

respect to 휉 we make 휉 → 0∓ in the resulting expressions. 
Using the continuity of  along the line 푥 = 0 and taking 

the arithmetic mean of lim → (휉, 휂) and lim → (휉, 휂) 

we have: 
휕휑
휕휉

(0,휂) = 푖
푐표푠ℎ푘 (ℎ − 휂)
푐표푠ℎ푘 , ℎ

+
1

2휋
휕
휕휉휕푥

(퐺 − 퐺 )(0,푦; 0,휂)휑(0,푦)푑푦 

 (28) 
The equations (27) and (28) are two coupled Fredholm 

integral equations with regular kernels for the unknown 
functions 휑(0,휂) and (0,휂). This pair of integral 

equations may be solved by a suitable numerical method. 
The hydrodynamic coefficients of interest in the present 

scattering problem are the reflection coefficient 푅 and the 
transmission coefficient 푇 which are obtained by letting 
휉 → −∞ in the equation (25) and 휉 → ∞ in (26) respectively 
and making use of 퐺 as given by (18): 

푅 =
2푐표푠ℎ푘 , ℎ

2푘 , ℎ + 푠푖푛ℎ2푘 , ℎ
	 푐표푠ℎ푘 , (ℎ− 푦) 푘 , 휑(0,푦)

+ 푖
휕휑
휕푥

(0,푦) 푑푦 

and 

푇 =
2푐표푠ℎ푘 , ℎ

2푘 , ℎ + 푠푖푛ℎ2푘 , ℎ
푐표푠ℎ푘 , (ℎ− 푦) 푘 , 휑(0,푦)

− 푖
휕휑
휕푥

(0,푦) 푑푦 

 
 
6  CONCLUSION 
 

The problem of scattering of water waves in an ocean of 
finite depth having a surface discontinuity with an ice-

covered ocean on one half and free surface subject to 
surface tension on the other is explored by a novel method. 
After formulating the Green’s functions for the two halves, 
one for the half occupied by the free surface with surface 
tension and the other for the half occupied by an ice-
covered ocean, Green’s second identity is made use of to 
the Green’s functions and potential function thereby 
resulting in two coupled Fredholm integral equations the 
solutions of which may be computed by suitable numerical 
methods. The method is a simple one taking care of the 
continuity conditions of the potential function and its 
derivative along the vertical line of the surface of 
discontinuity. The analytical expressions for the reflection 
and transmission coefficients are arrived at. The present 
study is of practical use in its applications related to 
protecting coastal areas from the rough sea in the arctic 
regions. 
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